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Abstract 
Ever since the world entered the age of information, scientists have looked into the developments and applications of the growing prospects of 

machine learning and neural networks. In particular, the ability for deep learning machines to determine the risk, survivability, and prognosis of 

tumors based on medical cancer databases has intrigued healthcare researchers seeking to improve these algorithms in recent years. There are 

distinct aspects of medical procedures where artificial intelligence (AI) training can be applied; for example, the calculation of risk scores for 

patients based on mammographic screening, analysis of the presence of biomarkers like spermine and other polyamines in fluids surrounding 

tumors, genomic and epigenetic assessments to map genes that influence cancer expression, as well as the utilization of metabolomic data from 

FTIR spectroscopy of a patient’s biofluids to help make a more reproducible and conclusive diagnosis. The goal of this review is to discuss the 

progress of AI and deep learning in clinical procedures and applications in recent years and evaluate the efficacy of certain AI methods for tumor 

diagnosis, prognosis, and prediction based on patient information from available medical databases. 
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1. Insight into Evaluations of Cancer Detection 

and Prediction with Artificial Intelligence 

Techniques Over Time 

Before the widespread accessibility of large amounts of data in the 

early 21st century, cancer screening was mainly done with human 

practitioners, limiting the success of such techniques to the 

judgement and decision making abilities of the person in control. 

The current precision of cancer diagnosis and prediction is by no 

means flawless; however, the understanding and integration of 

artificial intelligence (AI) and its subsets like machine learning and 

deep learning (DL) into imaging, spectroscopy, and other medical 

procedures have already shown increases in specificity and quality 

of measurements as opposed to evaluations done by human 

examiners [1]. 

 

 

 

Initially (Figure 1), medical machine learning and deep 

learning were applied to imaging through the viewing of slides 

from liquid biopsies, analyzing fine-needle aspirates and 

cytological features of certain tumors [2]. As time progressed, the 

applications of computer-aided diagnosis (CAD) evolved to 

accompany mammography and endoscopic imaging, creating a 

density-based risk score for patients. For example, a convolutional 

neural network used to grade gliomas achieved a classification 

accuracy of 96% when classifying glioblastoma multiforme (GBM) 

vs low-grade glioma (LGG) data sets [3]. Another approach that 

developed to utilize the reliability and reproducibility of machine 

learning was the analysis of the biofluids surrounding tumors for 

deviations in the presence of certain biomarkers [4]. The final 

significant method that combines artificial intelligence and cancer 

datasets is the prediction power of DNA microarrays and genomics 
[5]. The genomic assessment of 
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Figure 1: The development timeline of AI assistance in tumor 

prediction, detection, and diagnosis 

ctDNA (circulating tumor DNA) allows for researchers to 

determine the survivability of the tumor and monitor any potential 

epigenetic developments [6]. In the microarray approach, neural 

networks will use vast amounts of patient data in the form of a 

DNA microarray, which displays different patterns of expressions 

of fluorescent markers on tumor cDNA (complementary DNA) and 

regular tissue cDNA. These deep learning algorithms will be able 

to make prognostic decisions that reflect on the degree of similarity 

between a patient’s DNA microarray results and other DNA 

microarrays that suggest long survivability, allowing medical 

workers to avoid unnecessarily using chemotherapy. In addition, 

certain sections of genomes can be mapped numerically to look for 

and compare mutations in oncogenes and tumor suppressor genes, 

aiding clinicians in generating patient plans and predictions. 

2. Machine Learning Advancements in Cancer 

Imaging and Computer Aided Diagnosis from 

1990s to 2020s 

As breast cancer screening programs began to increase in the 

1980’s, more possibilities for deep learning algorithms opened up 

in the field of tumor imaging and mophometrics. In 1993, 

researchers at the University of Wisconsin were able to use an 

interactive computer system that noted differences in cytologic 

features from a scan of Fine-needle aspiration (FNA) slides with 

the X Window System and the Athena WidgetSet on a DECStation 

3100. Using slides from 569 patients, they were able to analyze the 

relative locations of the cell nuclei using an active contour model. 

With this setup, they were able to pinpoint grayscale discontinuities 

and evaluate nuclei radius, perimeter, area, compactness, 

smoothness, concavity, symmetry, and fractal dimension in a 

cancer diagnosing context. To predict the accuracy of the deep 

learning system, they performed a tenfold cross-validation, which 

divides the data set into ten equal sized, randomly selected parts 

and utilizes each part as a test set on a classifier from the remaining 

nine sets. This cross-validation yielded a separation accuracy of 

97.3%. When testing the actual accuracy of the machine diagnosis 

on a sample of 54 slides (36 benign, 17 malignant, and 1 papilloma 

with atypia), the system was correct in every instance [2]. 

Furthermore, in 1997, a study done by American Cancer Society 

informaticians looked to neural networks that improved the 

existing TNM Classification of Malignant Tumors (TNM) staging 

system developed in the 1950s. TNM evaluates prognostic 

variables like tumor size, positive regional lymph nodes, 

radiographs, and distant metastasis. A Nevprop neural network was 

implemented for this study, using a gradient descent optimization 

function for backpropagation and adjusting weights. The data was 

divided into 5007 training cases, with a validation set made up of 

3005 cases [7]. Using patient TNM variables from six different 

colorectal and breast cancer data sets, the neural network was able 

to give a more accurate 5-year specific prognosis than the TNM 

system by itself. For example, in the analysis of the breast 

carcinoma, the Artificial neural network (ANN) had a predictive 

accuracy of 0.770 as opposed to 0.720 for the TNM alone 

(P<0.001) [7]. In response to these results, the researchers were able 

to foresee how ANNs offer a better illness severity judgement and 

decrease interpatient variability, resulting in smaller and less 

expensive clinical trials with more homogenous groups. Following 

the trend of increasing clinical data types and availability over 

time, in 2013, scientists from Mindlab Research Group and Case 

Western Reserve University developed a deep learning network 

designed for analyzing digital images to detect and predict basal 

cell carcinoma. Using histopathology slides stained in hematoxylin 

and eosin (H&E), the auto-encoder algorithm is able to make out 

key patterns indicative of basal cell carcinoma in cell 

morphological structures rather than just observe common visual 

appearances in natural scene images. The scientists state how their 

approach differs from other older visual detection methods like 

discrete cosine transform and bag of features (BOF) by integrating 
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visual interpretability in the classification process, allowing the 

neural network to examine learned features and predict outcomes.  

The cost function is represented with a logistic regression model to 

adjust the network’s weights and biases during the training phase. 

Using a BCC dataset of 1417 images marked by a pathologist to 

show either a positive or negative presence of carcinoma, the 

network was able to significantly outperform BOF (p>0.05) in 

accuracy while differences among the deep learning networks were 

not significant (p<0.01), as shown by t test [8]. Another stage of the 

DL network was the addition of digital staining to highlight cancer 

features in red, explaining to pathologists why an automatic 

classifier is directing towards a certain classification. In the end of 

the study, they were able to showcase the ways that a learned 

network representation improves a canonical predefined 

representation, even aiding pathologists in interpretability with the 

automated classifier’s digital staining output.  

In 2015, two researchers from Stanford University created a similar 

modular approach to use a convolutional neural network (CNN) in 

the grading of brain gliomas. The treatment options for gliomas 

highly depend on the grade they receive. Thus, this modular 

pipeline classification method evaluates individual nuclei by 

assigning them a score based on nuclear morphometry, texture, 

intensity, and gradient statistic. Using a dataset from The Cancer 

Genome Atlas which contained H&E stained histopathology slides 

of GBM and the LGG variety, the researchers were able to select 

images where they segmented the nuclei in the preprocessing stage 

with top-hat filtering and hysteresis thresholding. The pipeline is 

implemented with Caffe software, first using a CNN to determine 

if the glioma is a GBM or LGG and then using another CNN to 

specify the grade of LGG if the glioma is not a GBM. When 

training the first ConvNet, the researchers used 875 samples of 

electron microbiopsy slides from 22 whole tissue slides from 4 

distinct tissue source sites, with a training subset of 6998 and 

validation subset of 1752 samples. As for the second network, they 

used 766 e-microbiopsy samples from 22 whole tissue slides from 

5 different tissue source sites, with a training subset of 5671 and 

validation subset of 1395 samples. During their testing of the 

modular pipeline on 10 independent test slides, the first CNN was 

accurate to 96% when classifying GBM vs LGG, while the second 

CNN was accurate to 71% when classifying Grade II vs Grade III 

for LGGs [3]. The lower success rate of the second CNN is 

explained by differences in slide preparation from institutions that 

provided data to the TCGA, as well as the subtler difference in 

morphology between a Grade II and Grade III LGG than for LGG 

vs GBM. Ultimately, the researchers noted that the ConvNet 

modular pipeline could help pathologists perform a second check 

while grading tumors and provide applications in teaching.  

In the past five years, examiners have explored and expanded 

artificial intelligence to be applicable to a plethora of different 

early stage predictions and risk scores. For instance, in August 

2019, medical scholars from Yonsei University, College of 

Medicine in Korea developed a lesion-based CNN that detected 

early gastric cancer (EGC) and predicted tumor depth from 

endoscopic imaging. In order to determine an appropriate treatment 

plan, staging must be accurate to endoscopy and biopsy findings. 

Since endoscopic resection and minimally invasive surgery are 

decided by the T stage, the plan is largely dependent on the tumor 

invasion depth. Endoscopic images are more subtle in differences 

than other medical imaging scenarios that implement deep 

learning. Therefore, an additional gradient-weighted class 

activation mapping (Grad-CAM) method was required to measure 

classification and localization errors. Grad-CAM allows the 

visualization of activation statuses over the training time, voiding 

the need for an additional module to generate visual explanations. 

A visual geometry group (VGG)-16 model was used to seperate 

endoscopic images into T1a, T1b, and non-EGC. In their study, 

11,539 endoscopic images (896 T1a-EGC, 809 T1b-EGC, and 

9834 non-EGC) were used from 800 patients (538 men and 262 

women; age: 26–92 years; mean age: 62.6 years) from the 

Gangnam Severance Hospital in Seoul. In their portrayed results, 

blue lines indicate the activated regions at testing, while green lines 

encircle the actual EGC area. The EGC region was accurately 

classified despite a misclassification of depth or presence in some 

cases in EGC detection and EGC depth prediction. When evaluated 

on the same test image set, the sensitivity and specificity for EGC 

detection were 91.0% and 97.6%, respectively, with the overall 

area under the curve being 0.981. The sensitivity and specificity of 

the tumor depth prediction in the lesion-based VGG-16 were 

79.2% and 77.8%, respectively, with the overall area under the 

curve being 0.851 [9]. In the end, the authors decided that a lesion 

based AI model was a promising tool in EGC prediction and 

diagnosis, despite a need for the expansion of AI that can better 

account for undifferentiated type histology and T1b-EGC.  

Adding on to the expansion of neural network-based models into 

cancer prediction, Google Health scholars evaluated a DL cancer 

prediction system on data from the United Kingdom and the United 

States in November 2019. Looking past the limitations of previous 

computer-aided diagnosis methods, they decided to compare the 

results with readers in actual clinical practice rather than laboratory 

simulations, use larger datasets than the smaller, enriched ones in 

previous studies, and examine the ability of AI systems to translate 

between test populations without extra training data. The UK data 

contained screening mammograms that were collected in 2012-

2015 from 25,856 women screened every three years at two 

screening centres in England. This set included 785 women who 

had a biopsy, and 414 women with cancer diagnosed within 39 

months of imaging. As for the USA test set, women were screened 

every two years, with the data consisting of screening 

mammograms collected in 2001-2018 from 3,097 women at a 

single medical center. The images included 1,511 women who 

were biopsied during this time period (686 diagnosed with cancer 

within 27 months of imaging) and a random subset of women who 

have never received a biopsy. The AI system predictions were 

evaluated by biopsy-confirmed breast cancer outcomes along with 

the initial conclusion made by readers over the course of clinical 

practice. As for human performance, this was computed based on 

the decision of the clinician to recall the patient for additional 

diagnostics. Using a reader study that included six US-board 

certified radiologists interpreting 500 different mammograms with 

the breast imaging-reporting and data system (BI-RADS) scale, the 

scholars constructed a receiver operating characteristic (ROC) 

curve for each reader for AI system comparison. In the end, the AI 

model surpassed the average performance of radiologists by a 

notable margin, with a change in area under curve (AUC) of 

+0.115 (95% CI 0.055, 0.175; P = 0.0002). The ROC curve for the 

UK data has an AUC of 0.889 (95% CI 0.871, 0.907). For the US 

data curve, the AUC is 0.757 (95% CI 0.732, 0.780). Another 

purpose of the AI model is to specify certain areas of suspicion for 

malignant tumors. Similarly, the human readers in the study 

performed rectangular region-of-interest (ROI) annotations around 

findings. With multi-localization receiver operating characteristic 

(mLROC) analysis for reader and AI comparison, the scholars were 

able to summarize each mLROC plot by finding the partial area 
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under the curve (pAUC). The AI model outperformed the readers 

by +0.0192 (95% CI 0.0086, 0.0298; P= 0.0004) [10]. The final 

findings of the experiment reveal that the system is able to 

generalize from the UK to the US, surpassing the human readers 

and reducing the workload of second readers by 88%.  

The following December, scientists from Karolinska University in 

Stockholm, Sweden developed a deep learning-based risk score for 

future breast cancer prediction, comparing it with a regular 

mammorgraphic density score. When screening for breast cancer, 

an MRI is often used for early detection, despite high costs and 

many more biopsies per cancer detected. By creating a score that 

performs risk stratification, MRI can be delivered to select women 

who need it most. Rather than a questionnaire based prediction 

method like the Gail or Tyrer-Cuzick model, their deep learning 

network can assess contributing factors outside of just age and 

mammographic density and extract more information. However, 

they do state a concern of the neural network being susceptible to 

learning irrelevant details from images with a flawed training 

setup. In the final study, 2238 women aged 40-74 were selected 

from the Stockholm county area, 278 of whom were diagnosed 

with breast cancer from 2013-2014. For developing the network, 

cases from 2008 to 2012 were used. The AUCs for the algorithm 

with DL risk score and the algorithm with age and dense area were 

0.65 (95% CI: 0.63, 0.66), 0.60 (95% CI: 0.58, 0.61). For every DL 

based risk model, the AUC was higher than the models that were 

density-based. Since there was a modest correlation between the 

DL risk score and the density-based score, the scientists concluded 

that the DL risk score was not simply estimating density and 

assessed prediction scores without being limited by inter reader 

variability. They also noticed that the false-negative rate was lower 

for the DL based model than for the age-adjusted dense area model, 

with the effect being most apparent in women who were 

subsequently diagnosed with aggressive cancers like lymph node-

positive cancers, where the febrile neutropenia rate was 31% for 

the DL risk score as opposed to 42% on the age-adjusted dense 

area model [11]. Although the AI risk score outperformed the 

density-based models, the scientists noted that the risk model 

should be trained with more cancer data from a variety of 

institutions, combined with another model to predict the risk of 

mammographic masking.  

Backing the shift of machine learning models towards making 

predictions that aid clinicians in forming treatment plans and 

diagnoses, in early 2020, doctors from Chun Shan Medical 

University in Taichung, Taiwan constructed a machine learning 

algorithm that aided in the prediction of colorectal cancer (CRC) 

survival by identifying risk factors that influenced recurrence and 

secondary primary malignancies (SPMs), important indicators for 

treating CRC. They selected 4299 adult patients with primary 

CRC, 541 of which have had at least 1 SPM. Additionally, 1989 

patients had recurrent CRC. In the past, risk factors for these two 

attributes were deemed to be tumor size, morphology, 

differentiation, prior radiation therapy, and smoking; however, no 

published rankings existed at the start of the study. Thus, the 

machine learning model filled the role and evaluated 20 different 

risk factors: patient age, primary site, histology, behavior code, 

differentiation, tumor size, pathologic stage (pStage), surgical 

margins, surgical procedures, radiation therapy, pre-operative 

radiation therapy, regional body order, dose levels of radiotherapy, 

extremum times of radiotherapy, BMI, smoking, areca 

consumption, and drinking. The researchers used the radial basis 

function kernel from the library for support vector machines 

(LIBSVM), building predictive models and optimizing both the C 

and γ parameters of each model. Furthermore, a Reduced Error 

Pruning Tree (REPTree) was implemented to produce a regression 

tree based on information gain or minimization of variance. As for 

the workflow of the model, the algorithm first split analyzed SPMs 

and recurrent CRC together, then four models for all 4 possible 

combinations of attributes were used. After that stage, feature 

selection through support vector machine (SVM)s and REPTrees 

was implemented and a 10-fold cross validation was employed to 

test the model’s performance. The classifiers using only the top 

eight features (behavior code, differentiation, regional body order, 

age, areca, surgery, radiation therapy, and lowest dose) were 

evaluated with the classifiers using all 20 features. In the results, 

the REPTree model that used the top eight features possessed a 

Matthew’s correlation coefficient (MCC) of 0.229, exceeding the 

MCC of the REPTree model without feature selection, which was 

0.282. Despite the success in being able to weight selected features 

as predicting factors for SPM and CRC recurrence, the algorithm 

had limitations in which site-specific data like tumor markers were 

excluded and hereditary data could not be provided [12]. Ultimately, 

the researchers were able to develop a clean, feasible method with 

feature selection for both improving prognostic and diagnostic 

accuracy and identifying elements that contribute to SPM and CRC 

recurrence, distinguishing the top four factors as pStage, surgical 

margin, smoking, and drinking. 

3. Progress of Machine Learning Modeling in 

Biofluid Analysis and Cancer Metabolomics 

from 2000s to 2020s 

In contrast with cancer imaging, a process that requires a larger 

devotion of time and a human radiologist to make diagnoses based 

on experience, metabolomics is an emerging field that allows for 

changes in metabolic processes and micromolecule composition to 

be measured and accounted for in a cancer diagnosing context with 

mass spectroscopy devices, especially useful when combined with 

the data guided classification ability of machine learning.  

For instance, in 2009, bioinformaticians from the Georgia Institute 

of Technology were able to use SVM ML classifier algorithms to 

scan liquid chromatography/ time of flight mass spectroscopy 

(LC/TOF MS) metabolomics data from ovarian cancer patients in 

order to detect the disease and circumvent the issue of its 

asymptomatic nature, often leading to a delayed diagnosis until its 

later progression (stage III/IV). LC/TOF MS was used due to its 

broadband metabolic profiling abilities and detection of 

metabolites that are distinct in chemical properties. The researchers 

obtained plasma serum from a total of 37 patients with papillary 

serous ovarian cancer and 35 controls. Using LC/TOF MS, 

mzMine was able to reveal 576 features in positive ion mode and 

280 features in negative ion mode. Using leave-one-out cross 

validation to evaluate prediction performance without feature 

selection, the nonlinear SVM outperformed the linear SVM with a 

performance of 83.3%. However, using feature selection methods, 

the predictive performance soared to over 90% [13].  

The bioinformaticians recognized that selection bias could be 

introduced if feature selection methods are applied to the whole 

dataset, affecting the prediction performances between feature 

selection methods. Statistical testing revealed that observed 

prediction performance between any ordered pair of the four 

feature selection methods were not statistically significant except 

for that between the SVMRFE_NL and the SVMRFE method. 

Despite this, they ultimately devised a way to aid in the diagnosis 
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of ovarian cancer in its early stages with metabolomic data as an 

indicator. In 2018, professors from Lanzhou University in 

Lanzhou, China were able to analyze patient plasma with known 

machine learning algorithms like SVMs, K-Nearest Neighbors 

(KNNs), Random Forest (RF), and back propagation (BP) to detect 

the presence of thyroid carcinoma (TC) and two kinds of tumors 

called pheochromocytoma and paraganglioma (PPGL). Using 

matrix-assisted laser desorption-ionization time of flight mass 

spectrometry (MALDI-TOF-MF), the scientists were able to 

analyze the mass spectrum of 150 normal plasma samples, 144 

samples from PPGL patients, and 36 samples from TC patients. 

Conclusively, the SVM was the most accurate classifier for 

detecting TC and PPGL (92.86% and 99.15% respectively), 

slightly superior to BP (87.5% and 95.51% respectively) [14].  

Furthermore, in July 2019, medical experts from Keio University, 

Teikyo University, and Kitasato University in Tokyo, Japan 

implemented a decision tree-based machine learning model to 

analyze salivary biomarkers to aid in breast cancer discrimination. 

Reflecting the potential overdiagnosis, high costs, and radiation 

exposure found in screening mammography, the medical experts 

decided to screen using saliva as an informative biofluid due to the 

presence of hydrophilic metabolites like amino acids and 

polyamines that can differentiate healthy controls and patients with 

breast cancer, as well as its practical and cost-effective collection. 

From 101 patients with invasive breast carcinoma, 23 patients with 

ductal carcinoma in situ (DCIS), and 42 healthy controls, the 

researchers were able to collect 166 unstimulated saliva samples. 

For the non-targeted examination for the presence of hydrophilic 

metabolites in samples, CE-time-of-flight-MS (CE MS) was used. 

Meanwhile, LC-triple quadrupole MS (QQQMS) was implemented 

for the quantification of polyamines. In an effort to remove 

unreliable data, metabolites that were either detected in less than 

50% of IC samples or below the quantification limit in 20+ 

samples were eliminated from the data set. The Mann–Whitney test 

was used for comparisons between controls versus IC and Q-values 

were obtained through adjusting P-values using a false discovery 

rate (FDR) that considered multiple independence tests. For 

between all three groups, the researchers decided on the Kruskal–

Wallis test and Dunn’s post test. After refining the data, multiple 

machine learning improved alternative decision trees (ADTrees) 

were implemented in an ensemble approach with information 

collected after bias controlled resampling. The number of nodes per 

tree (boosting number) and the total number of trees (bagging 

number), were determined by two-fold cross-validation. The 

resampling involved a process where individual data was randomly 

selected with redundant selection, repeated a total of 200 times 

with both differing and random values. The polyamine spermine 

displayed the greatest AUC values for comparing IC to C and the 

MLR model containing spermine and Ru5P together showed 

higher AUC values than each component model alone. Since only 

these two metabolites remained after features were selected using P 

= 0.05, this suggested a positive correlation between other 

metabolites and spermine or Ru5P [15]. When compared together, 

both models showed no significant difference between ROC 

curves. The ADTree model showed better AUC values than the 

spermine and MLR model, while ADTree+Bagging showed the 

highest AUC values as this was the only model that showed 

significant differences in ROC curves compared to the other 

models. The researchers named several limitations in their study, 

such as polyamine concentrations in biofluids being influenced by 

diet, environmental factors, and various diseases. The researchers 

state that the final discrimination model should be compared with 

other cancer data to evaluate specificity. Ultimately, they 

concluded that salivary metabolomics combined with a machine 

learning based approach to classification can provide a non-

invasive screening procedure and can be conducted before a 

mammography to recommend a biopsy.  

Among the popular forms of mass spectroscopy for cost-effective 

biofluid data analysis is Fourier Transform Infrared spectroscopy 

(FTIR), which can be run on human blood serum to discriminate 

between cancer patients and controls. In May 2020, clinicians from 

the University of Strathclyde and University of Liverpool in the 

UK used FTIR spectroscopy on serum to provide an early detection 

method for brain tumors, with additional machine learning 

algorithms for classification. In their report, they first discuss how 

cancer antigen tests like CA 19-9 and CA 125 have high specificity 

values but low sensitivity values, yielding a low Positive Predictive 

Value (PPV). Since this value determines the probability that a test 

will predict a true cancer diagnosis, current screening tests may 

lead to unnecessary diagnosis and treatment. However, FTIR 

spectroscopy’s new attenuated total reflection mode allows for 

scientists to measure the change in infrared radiation from an 

internally reflected beam touching the sample, overcoming light 

scattering while still being highly sensitive and specific. The 

researchers made note of a study done in 2010 where 31-96 year 

old patients with breast carcinoma in situ and 98 healthy controls 

had their serum extracted and analyzed by FTIR spectroscopy. 

They then used cluster analysis and an ANN (unsupervised and 

supervised respectively) to classify the patients, yielding a 

sensitivity and specificity above 95%. Furthermore, the difficulty 

of brain cancer diagnosis through imaging encouraged the use of 

non-invasive alternatives to biopsies. In another described 

experiment, 41 lymphoma and GBM serum samples were analyzed 

with ATR-FTIR spectroscopy and classified with machine learning 

techniques like RF, partial least square discriminant analysis (PLS-

DA), and SVM. The PLS-DA algorithm outperformed the others, 

with a sensitivity of 86.3% and a specificity of 90.1% [4]. 

Therefore, despite the current obstacles of clinical workflow 

disruption and increased economic burden placed on healthcare 

workers, the researchers made it clear that FTIR spectroscopy in 

combination with a machine learning-based classifier allows for a 

reagent-free, noninvasive, and inexpensive platform that allows for 

clinicians to discover new tumor biomarkers and obtain an early 

diagnosis. 

4. Developments in DNA Microarrays and 

Genomics with Machine Learning 

Classification from 2000s to 2020s 

As the use of DNA microarrays to measure gene expression from 

mRNA transcripts expanded to include clinical biocomputation in 

the past few decades, new applications were uncovered for 

selecting cDNA fluorescent markers that combined with AI 

classifiers, could detect and predict the early onset of cancer for 

many patients. In early 2003, shortly before the Human Genome 

Project was completed, researchers Sung-Bae Cho and Hong-Hee 

Won from Yonsei University in Seoul, South Korea were able to 

measure the efficiency of a multi-layer perceptron (MLP), KNN, 

SVM and structure adaptive self–organizing map (SASOP) 

algorithm for the classification of three lymphoma, leukemia, and 

CRC high density oligonucleotide microarray datasets. For feature 

selection, they decided on 7 different methods: Pearson’s 

correlation coefficient (PC), Spearman’s correlation coefficient 

(SC), Euclidean distance (ED), cosine coefficient (CC), 
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information gain (IG), mutual information (MI), and signal to noise 

ratio (SN). The informative genes that were chosen from 

gene/feature selection were visualized through statistical 

correlation analysis with a linear relationship. For the leukemia 

dataset, 25 samples were acute myeloid leukemia (AML) and 47 

samples were acute lymphoblastic leukemia (ALL), taken from 63 

bone marrow samples and 9 peripheral blood samples. In the colon 

dataset, there are 62 samples of colon epithelial cells from CRC 

patients, 40 of which are positive CRC samples, with every sample 

containing 2000 gene expression levels. The lymphoma dataset had 

24 samples of GC B-like and 23 samples of activated B-like. When 

comparing the average performance of each feature selection 

method, IG and PC had the highest recognition rate. As for the 

classifiers, KNN (with PC feature selection) and MLP produced a 

better average recognition rate of 85.3% for both algorithms in the 

leukemia dataset [16]. In the end, for the ensemble method of 

cancer classification, the correct combination of KNN, MLP, IG, 

and PC together allowed for a simple approach to rank genes and 

categorize from DNA chips.  

Likewise, in 2005, a similar study was conducted by 

bioinformaticians from Hamilton, New Zealand and Neuherburg, 

Germany, using wrapper and filter approaches to classify acute 

leukemia and diffuse large B-cell lymphoma data from 

microarrays. Filter approaches, which are faster due to less of a 

computational requirement, remove irrelevant characteristics 

according to the overall composition of the data’s features, while 

wrapper approaches, generally being more accurate based on the 

use of machine learning algorithms, use selected feature subsets 

and cross-validation to evaluate said feature subsets. For their filter 

approach, they mainly used correlation-based feature selection 

(CFS), with the classifiers being the decision tree learner C4.5, 

Naïve Bayes, and a SVM. The leukemia data set contains ALL and 

AML, with the training set having 38 bone marrow samples (27 

ALL and 11 AML). When ranking genes using two classifiers, 

C4.5 and Naïve Bayes, and the wrapper, a single gene is selected, 

zyxin, which is also the only gene selected by CFS. In 38 runs, 

When run 38 times, zyxin was selected 34 times (92%) by CFS, 34 

times (92%) by the C4.5 wrapper and 28 times (74%) by the Naïve 

Bayes wrapper. Boxplots of zyxin expression levels for each 

training data set indicates that zyxin expression can differentiate 

ALL from AML in the training set, as the medians are 360.0 and 

2947, respectively [5]. The researchers then note that zyxin has been 

demonstrated to enter the nucleus with other proteins, exiting with 

leucine-rich nuclear export sequences and potentially regulating 

transcription activity by interactions with transcription factors. 

Because of these results alone, the researchers were able to 

conclude that zyxin had at least indirect involvement with acute 

leukemia, and that a combination of classifiers and wrappers is an 

accurate tool for pulling relevant features out of microarray data. 

Nevertheless, the researchers state that one computational 

drawback of some ranking filter algorithms is that each gene is 

scored individually, while in reality a combination of expression 

levels for multiple genes might be responsible for cancer. By not 

recognizing that several genes may contribute to the onset of some 

cancers, these filters might look past these genes if their individual 

expression levels are not informative enough for classification. As 

the proliferation of big data allowed clinical applications of 

machine learning on cancer classification and detection to scale up 

in the last decade, more clinicians have been looking at approaches 

to cancer prediction and treatment plans.  

One such example was in 2015, where scientists Emmanuel 

Adetiba and Oludayo O. Olugbara from Durban University of 

Technology in Souh Africa built a neural network ensemble with 

histogram of oriented gradient (HOG) genomic features to predict 

lung cancer. They first identified two major groups of genes that 

are mutated in lung cancer cells: oncogenes and tumor suppressor 

genes. Then, they discussed current methods of genetic screening 

for cancer, such as direct tumor sequencing (limited by low 

sensitivity), quantitative polymerase chain reaction (PCR), 

fluorescence in situ hybridization (FISH), immunohistochemistry, 

and microarray technology (all limited by degree of mutation 

coverage). In the end, the authors decided to evaluate the targeted 

sequencing (TS) capability of next generation sequencing (NGS) to 

predict non-small cell lung cancer (NSCLC). Using 6,406 samples 

from the National Center for Biotechnology Information (NCBI), 

their experimental dataset contained normal, EGFR deletion, 

EGFR substitution, KRAS substitution, TP53 deletion, and TP53 

substitution mutations. They mapped nucleotides numerically with 

the Voss mapping method, which allows for various digital image 

processing (DIP) techniques to acquire feature descriptors like 

HOG and LBP for genomic sequences. The Voss map is 

constructed for the EGFR nucleotides, providing a unique feature 

representation for ANN and SVM use. When running the ensemble 

and nonensemble MLP-ANNs, the researchers partitioned the HOG 

data into 70% training, 15% validation, and 15% testing. In 

addition, they chose to vary the number of neurons in the hidden 

layer from 10 in steps of 10 to 100, recording the mean square 

errors. The 8th MLP-ANN had the highest accuracy of 87.6%, with 

a validation performance of 0.0584 at 490 epochs [17]. Ultimately, 

the researchers concluded that their approach with a HOG 

descriptor, MLP-ANN, and Voss numerical mapper was versatile 

in automated cancer prediction, with several biomarkers for lung 

cancer on a single platform. Another benefit was cooperation with 

NGS genomic-based technology, allowing high prediction 

accuracies.  

In more recent years, machine learning research has branched DNA 

based assessments to include epigenetic factors as well. In 

particular, in July 2019, clinicians from the AACR developed a 

combined genomic and epigenetic mutation assessment on ctDNA 

presence to increase the assay sensitivity in early stage CRC. This 

model was based on a machine learning classifier trained on 111 

ctDNA samples (38 late stage, 10 early stage, and 63 healthy 

controls). With their plasma-only assay that included somatic 

genomic variant detection and epigenomic analysis in conjunction 

with the ML classifier for filtering, the ctDNA detection rate for 

early stage CRC was 94%, with 94% specificity, exceeding the 

detection rate of somatic genomic variant detection alone [6]. 

Consequently, the clinicians emphasized the implications of patient 

ctDNA detection rate in medical utility and early stage 

management, working as a significant indicator of stage I-III CRC. 

5. Conclusions and Future Perspectives 

The impacts of machine learning and later, deep learning on 

clinical data and diagnostics were relatively new, having expanded 

in generalizability and predictive power in the last few decades. 

The advantages and drawbacks of AI-based cancer screening are 

listed in table 1 and divided into three subcategories: image 

analysis, biofluid analysis, and genetic analysis. When comparing 

the general trends of the advancements regarding each method over 

time, the contrast of reports from the 1990s to the 2020s establish 

an increase in the clinical translation of deep learning and machine 

learning tools, decreasing costs, healthcare worker burdens, human 

error, and biopsies per cancer detected. Newer methods like FTIR 
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spectroscopy, salivary metabolomics, and combined 

genomic/epigenetic assessments work with alternative tree-based 

classifiers and convolutional ANNs to elevate predictive 

performance, sensitivity, and specificity beyond predecessors that 

worked with smaller and less homogenous data sets. As patient 

databases multiply in size and availability in the future, the clinical 

implications may reveal a similar trend in expanding predictive 

accuracy in cancer screening methods, decreasing both clinical trial 

and patient healthcare costs, and increasing the rate at which 

patients are diagnosed in early stage cancers.  

Currently, more research needs to be conducted in the field of 

proper, effective initial neural network training and multi-gene 

dependent cancer expression factors in order to deliver more 

pinpoint classification and allow AI models to learn specific 

features to select in genomic assessments, respectively. 

Table 1: The advantages and limitations of available AI assisted tumor analysis. 

ML 

Analysis 

Method 

 

Applications 

 

Advantages 

 

Limitations 

Image 

Analysis 

FNA slides, 

histopathology 

slides, MRIs, 

endoscopies  

● Imaging analysis allows clinicians to reduce false 

positives with higher sensitivity in classification. 

● The characterization and classification of tumors 

influence several kinds of risk predictors, such as 

a mammographic risk score.  

● AI based CAD models were able to more 

accurately read mammograms than human 

readers with a change in AUC of +0.115 (95% 

CI 0.055, 0.175; P = 0.0002) 

● When combining the TNM staging system with 

ANNs, the combined system provides a better 

illness severity judgement and decreases 

interpatient variability, decreasing the cost of 

clinical trials. 

● The early detection and characterization of breast 

cancer allows for the conservation of MRIs for 

patients who need it most, further decreasing 

biopsies per cancer detected [11]. 

● During classification, neural 

networks are susceptible to learning 

irrelevant features if there are flaws 

in training setup [11]. 

● CRC risk evaluating ML models did 

not account for other site-specific 

tumor markers and hereditary data. 

● Some recurring instances of 

neoplastic lesions contain molecular 

aberrations different from the main 

tumor, increasing resistance to 

radiation and imaging therapies [18]. 

● Cancer imaging requires a larger 

devotion of time than other cancer 

detection and prediction 

technologies, as well as a human 

radiologist to make experience 

guided diagnoses. 

Biofluid 

Analysis 

Plasma 

fractions, 

blood serum, 

saliva 

● Combined with LC/TOF MS, which revealed 

576 features in positive ion mode and 280 

features in negative ion mode, feature selection 

methods allowed the predictive performance of 

the model to exceed 90% when using leave-one-

out cross validation to evaluate prediction. 

● The analysis of FTIR mass spectroscopy allows 

for a wide range of biomolecules with differing 

charges, concentrations, and chemical properties 

to be evaluated [4]. 

● Metabolomic data from mass spectroscopy does 

not need a large commitment of time to analyze 

and can be automated to a larger extent than 

radiological machine learning methods. 

● Screening with saliva as an informative biofluid 

eliminates radiation exposure, promotes a cost-

effective collection method, and differentiates 

healthy controls and patients with breast cancer 

due to the presence of hydrophilic metabolites 

like amino acids and polyamines. 

● The attenuated total reflection mode for FTIR 

spectroscopy allows change in infrared radiation 

to be calculated from an internally reflected 

beam in contact with the sample, conserving high 

sensitivity and specificity while also overcoming 

light scattering. 

● Clinical translation of medical 

spectroscopy technology has yet to 

be achieved due to current obstacles 

of clinical workflow disruption and a 

larger economic burden placed on 

healthcare employees. 

● Selection bias can be introduced in 

prediction models when feature 

selection methods are applied to the 

whole dataset, changing the 

prediction performances between 

feature selection algorithms. 

https://paperpile.com/c/E8IMnE/PvlI
https://paperpile.com/c/E8IMnE/PvlI
https://paperpile.com/c/E8IMnE/RGI6
https://paperpile.com/c/E8IMnE/4Yrl
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Genetic 

Analysis 

ctDNA, DNA 

microarrays, 

epigenetic and 

genomic 

biomarkers 

● DNA microarrays provide a large volume of data 

to allow neural networks to train and increase 

predictive performance. 

● ctDNA allows clinicians to view the current and 

dynamic stages of a cancer, tracking progression 

and monitoring for genetic or epigenetic 

mutations in short time periods [6]. 

● Using a HOG descriptor, MLP-ANN, and Voss 

numerical mapper allowed several biomarkers 

for lung cancer on a single platform for 

automated cancer prediction that returned high 

accuracy due to cooperation with NGS genomic-

based technology [17]. 

● When combining an ML classifier for filtering 

with an epigenetic and genomic plasma assay, 

the ctDNA detection rate for early stage CRC 

improves to 94%, with 94% specificity [6]. 

● Some ranking filter algorithms rank 

genes individually; however, the 

reality is that combinations of several 

genes and expression levels may 

account for cancerous traits. Without 

considering the possibility of several 

genes contributing to cancer, filters 

can potentially look past these genes 

if they are not expressive and 

informative enough individually [5]. 

● Some metabolites like polyamines 

and amino acids fluctuate according 

to diet, diseases, lifestyle, and 

environmental factors, meaning that 

cancer may not be the root cause of 

some polyamine abnormalities. Thus, 

when combining multiple markers, 

extraneous factors should be 

minimized for accurate determination 
[15]. 
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