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Abstract 

Respiratory syncytial virus (RSV) infection is common in children and often causes severe respiratory clinical complications. 

Therefore, the establishment of biomarkers that predict severe clinical outcome is required. We performed in silico analysis across 

2 datasets with available information on gene expression and disease severity to identify predictive factors of RSV infection 

progression. First, we selected differentially expressed genes (DEGs) in the severe group. Second, we added the DEGs in pathway 

analysis to observe an alteration of pathway status in the severe group. This analysis revealed candidate genes that affect pathway 

status. Finally, we calculated the odds ratio of the candidate genes involved in disease severity to a severe clinical course. We 

found that erythropoietin (EPO), a glycoprotein hormone controlled by hypoxia-inducible factor (HIF)-1, is upregulated in 

children with severe disease. Furthermore, increased expression of BNIP3L and FECH, downstream genes regulated by EPO 

levels, are highly associated with a severe course of the disease in both datasets. We propose that EPO-driven downstream 

signaling, especially increased expression of BNIP3L and FECH, is a biomarker that defines disease severity and potential clinical 

complications in children with RSV infection. 
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Introduction 

RSV is one of the most common causes of lower respiratory 

tract infection (LRTI) in children under 5 years.
[1]

 Most 

infected children with RSV recover spontaneously, although 

it often causes severe complications that require 

hospitalization.
[2]

 In developed countries, the mortality of 

LRTI caused by RSV is 0.3%, while the mortality in 

developing countries is 2.1% in children under 5 years.
[3]

 

Because LRTI provoked by RSV often develops into a 

severe condition in a short period of time, the prediction of 

potential disease complications is important. Indeed, several 

predictive factors for disease severity, such as premature 

birth, congenital heart disease, and chronic lung disease, 

have been identified.
[4]

 However, children without these 

known risk factors often end up hospitalized with severe 

complications.
[5]

 This justifies the need for timely and 
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accurate forms of diagnosis through molecular means that 

predict RSV LRTI disease evolution. 

Using microarray and transcriptome analysis of peripheral 

blood, 2 groups have investigated the association of gene 

expression and disease severity in patients with RSV 

infection.
[5,6]

 On the one hand, Mejias et al. identified the 

immune response pathway as a key factor following RSV 

infection. They observed that T cells, cytotoxic/NK cells, 

and plasma cell genes were underexpressed in children with 

severe RSV LRTI. On the other hand, Brand et al. focused 

on olfactomedin 4, the most altered gene when severe and 

mild complications were compared. Indeed, the increased 

expression of olfactomedin 4 is strongly associated with 

LRTI disease severity.
[5]

 Our results are based on the 

reanalysis of these molecular datasets to identify prognostic 

biomarkers. We performed meta-analysis across these 

datasets to merge biomarkers that predict severe course of 

illness in children with RSV infection. 

Materials and Methods 

Dataset search 

We searched the NCBI Gene Expression Omnibus (GEO) 

database from January 2013 to November 2016. The 

datasets that included information on disease severity and 

gene expression data post-RSV infection in children were 

downloaded from the GEO database. 

Datasets 

We used 2 datasets, GSE38900 and GSE69606, which 

include clinical information and transcriptome data from 

peripheral blood obtained at the early stage of RSV infection 

(at median time of 48 h post-admission in GSE38900 and 

within 24 h after first contact with the hospital in 

GSE69606; Table 1).These datasets exclude cases with co-

infection of bacteria or virus, congenital heart disease, 

chronic lung disease, immunodeficiency, prematurity, and 

systemic steroid treatment within 2 weeks before 

presentation in GSE38900, and cases with corticosteroid use 

in the prior 48 hours, congenital heart disease, lung disease, 

and immunodeficiency in GSE69606. In GSE69606, data of 

the acute and recovery states are only included where we 

analyzed the samples in the acute stage. 

Comparison of gene expression 

For GSE38900, non-normalized data were log2-

transformed. Gene expression was compared using an 

empirical Bayes/moderated t-statistic
[7]

 in limma package in 

R. DEGs were defined as the false discovery rate (FDR) < 

0.05 and P < 0.05 as well as the absolute difference between 

groups > 2-fold. 

For GSE69606, background removal, quantile 

normalization, and probe set summarization for the raw data 

were performed using robust multichip analysis (RMA). The 

data were then log2-transformed. The procedure for the 

identification of DEGs was performed as described above. 

Pathway analysis 

The DEGs defined as described above were added into 

Ingenuity Pathways Analysis (IPA, Ingenuity Systems, 

Redwood City, CA, USA). In the IPA analysis, the P value 

obtained by Fisher’s exact test was used as a significant 

difference. 

Statistical analysis 

Odds ratio including multivariate analysis calculated by 

logistic regression analysis was performed using the 

generalized linear model (GLM) package in R with the 

family as the binominal. 

Results 

 
Figure 1: Gene expression profile 

MA plot shows the comparison of gene expression in the severe and non-severe groups in GSE38900 (a) and GSE69606 (b). Pink 

dots are genes with FDR < 0.05 and P value < 0.05. The pink dots located off-center over the red line (LogFC = 1) are defined as 

DEGs. 
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Table 1: Baseline characteristics 

  GSE38900 GSE69606 

Clinical course 

healthy 5 0 

mild 8 9 

moderate 9 9 

severe 7 8 

Age (months) median (range) 3.97 (2.67-6.13) NA 

Gender 
male 2 (40%) 

NA 
female 3 (60%) 

NA: Not available 
 

Table 2: Top 25 DEGs in GSE69606 

Upregulated  Fold difference Downregulated Fold difference 

OLFM4 100.9 GZMH -6.2 

MMP8 46.8 FGFBP2 -6.1 

CAECAM8 41.5 LGALS2 -6.0 

CA1 33.2 GNLY -5.5 

CHI3L1 28.7 KLRF1 -5.1 

SELENBP1 28.1 KLRC2 -4.9 

DEFA4 27.4 TGFBR3 -4.7 

EPB42 25.3 GZMK -4.7 

LTF 23.7 ALYREF -4.7 

CRISP3 22.5 KLRD1 -4.6 

CEACAM6 19.6 GZMB -4.5 

BPI 19.1 YME1L1 -4.2 

ARG1 18.9 FCER1A -4.0 

AHSP 18.6 SPON2 -3.9 

ANXA3 18.4 RGS1 -3.9 

GYPA 18.0 AKR1C3 -3.7 

ELEANE 17.9 XCL2 -3.6 

MPO 17.9 ITPKB -3.6 

HP 17.5 SH2D1B -3.6 

PRTN3 16.2 KLRB1 -3.4 

SNCA 15.4 IGHG3 -3.4 

TNS1 14.7 CD160 -3.4 

MS4A3 14.5 PRF1 -3.4 

LCN2 14.0 ADGRG1 -3.4 

SLC4A1 13.9 PTGDR -3.3 

Bold font indicates genes that were also identified in the original analysis. 
 

Table 3: Upstream prediction 

Upstream  GSE38900 GSE69606 

HIPK2 

Activation z-score 2.236 2.641 

Overlap P value 4.82E-04 6.69E-09 

DEG ANK1, FECH, KLF1, SPTB, 

TFR2 

ALAS2, ANK1, BCL2L1, FECH, GATA1, 

HBE1, HBZ, KLF1, SLC25A37, SLC4A1 

EPO 

Activation z-score 2.562 2.998 

Overlap P value 5.49E-04 1.08E-13 

DEG ANK1, BLVRB, BNIP3L, 

CA1, CREG1, FASLG, 

FECH, GYPA, KLF1, 

RHAG 

ABCA13, ALAS2, ANK1, BCL2L1, BLVRB, 

BNIP3L, CA1, CA2, CHIT1, FECH, GATA1, 

GSPT1, GYPA, HBG2, KLF1, MPO, MYB, 

NFE2, PTCD4, RHAG, SELP, SLC4A1, 

STRADB, TAL1 

Bold font indicates differentially expressed genes observed commonly across 2 datasets. 
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Table 4: Odds ratio of DEGs regulated by EPO 

 GSE38900 GSE69600 

 OR 95% CI P value OR 95% CI P value 

ANK1 2.67E+09 1.65E-206-NA 0.996 50.999 5.412-1308.526 *0.003 

BLVRB 11.666 1.691-117.768 *0.019 2.83E+09 1.55E-172-NA 0.996 

BNIP3L 10.624 1.664-97.330 *0.019 24.000 3.293-288.442 **0.004 

CA1 21.333 2.249-511.040 *0.017 6.94E+08 1.42E-122-NA 0.994 

FECH 14.999 2.214-149.770 **0.009 13.333 1.952-133.770 *0.013 

GYPA 2.67E+09 1.65E-206-NA 0.996 28.333 3.205-663.926 **0.008 

KLF1 0.450 0.053-2.767 0.409 50.999 5.412-1308.526 **0.003 

RHAG 2.67E+09 1.65E-206-NA 0.996 5.20E+08 1.44E-153-NA 0.995 

OR: Odds ratio 

NA: Not applicable 

CI: Confidence interval 

Table 5: Multivariate analysis of candidate gene expression in clinical course 

 Crude Adjusted 

 OR 95% CI P value OR 95% CI P value 

BNIP3L 10.625 1.664-97.330 *0.019 9.435 1.300-105.796 *0.038 

Age 0.878 0.524-1.142 0.478 0.963 0.523-1.308 0.846 

Gender 0.562 0.090-3.175 0.514 0.640 0.076-5.344 0.670 

FECH 15.000 2.214-149.770 **0.009 14.219 1.880-173.534 *0.017 

Age 0.878 0.524-1.142 0.478 0.962 0.516-1.301 0.846 

Gender 0.562 0.090-3.175 0.514 0.486 0.047-4.247 0.511 

OR: Odds ratio 

Age was evaluated as a continuous variable. 

Gene expression alteration 

The cohorts were divided into 2 groups, severe or non-

severe (mild and moderate), and the gene expression pattern 

was compared between these groups (Table 1). In 

GSE38900, 234 genes were differentially expressed (144 

upregulated and 121 downregulated in the severe group) 

(Figure 1a). In GSE69606, 289 DEGs were identified (231 

upregulated and 47 downregulated in the severe group) 

(Figure 1b). Although the grouping criteria had a modest 

difference in GSE69606 (severe vs. mild in the original 

analysis, whereas severe vs. non-severe [moderate and mild] 

in this study), surprisingly, the DEGs in our study are almost 

identical to the result of the original analysis (Table 2).  

Pathway analysis 

The DEGs in each dataset were independently introduced 

into IPA to identify pathways up- or downregulated. We 

focused on upstream regulator analysis based on 

overlapping P values and activation z-scores. Among 

upstream regulators that altered its activation status in each 

dataset, only 2 upstream regulators overlapped across the 

sets. EPO: P = 5.49-04E in GSE38900 and P = 1.08E-13 in 

GSE69606. HIPK2 (homeodomain-interacting protein 

kinase 2): P = 4.82-04E in GSE38900 and P = 6.69E-09 in 

GSE69606 (Table 3). Both pathways are upregulated in the 

severe group. EPO: z = 2.562 in GSE38900 and z = 2.998 in 

GSE69606; HIPK2: z = 2.236 in GSE38900 and z = 2.2641 

in GSE69606 (Table 3).  

Disease severity responsive genes 

Among the predicted upstream regulators of the DEGs, we 

focused on DEGs observed across the 2 datasets. The 

number of DEGs that overlapped across the datasets is 3 in 

the HIPK2 and 8 in the EPO pathways (Table 3). 

Interestingly, all 3 DEGs in the HIPK2 pathway were also 

observed in the EPO pathway as DEGs (Table 3). We next 

investigated the effect of expression of DEGs on disease 

severity. We calculated an odds ratio of all the DEGs when 

the expression was above median (Table 4). This analysis 

revealed 4 genes in GSE38900 and 5 genes in GSE69606 as 

disease severity-related genes with significant P values 

(Table 4). Among those genes, BNIP3L and FECH showed 

the highest significance across the datasets. In the previous 

report, age influences immune response that is essential for 

disease severity. Therefore, we performed a multivariate 

analysis to account for other factors such as age and gender 

in GSE38900. In this analysis, BNIP3L and FECH remained 

significant (Table 5). 
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Discussion 

In this study, we performed in silico analysis to identify 

biomarkers that predict a severe course of RSV LRTI. The 

unbiased screening revealed the relationship between the 

upregulation of EPO and HIPK2 transcription factor with 

disease severity. EPO binds to its receptor (EPOR) on 

erythroid progenitors to stimulate their proliferation and 

differentiation into hemoglobin-containing erythrocytes.
[8]

 

HIPK2, a serine/threonine-protein kinase, is involved in 

p53-mediated apoptosis and cell cycle regulation.
[9]

 Thus, 

these pathways play roles in distinct systems; however, 

DEGs that form the HIPK2 pathway in this study are 

completely overlapped with the genes that form the EPO 

pathway (Table 3). This indicates that the EPO pathway 

includes more DEGs compared to the HIPK2 pathway and 

this prompted us to focus on the EPO pathway in disease 

severity. 

Much evidence has revealed that EPO is induced by 

hypoxia-inducible factor 1 (HIF1) in a hypoxic state.
[10,11]

 

HIF1 is composed of 2 subunits, HIF1 and HIF1 .
[12]

 In 

normoxic conditions, HIF1 is under ubiquitination 

dependent proteolysis. Once cells are under hypoxic 

conditions, HIF1 is stabilized and translocates into the 

nucleus. Then, HIF1 forms a heterodimer with HIF1 and 

activates transcription of HIF1-regulated genes such as 

EPO.
[11,10]

 Different studies have revealed that bacterial 

infection also activates HIF1 independently of hypoxia.
[13]

 

RSV infection also causes hypoxia-independent activation 

of HIF1.
[14]

 These lines of evidence might provide a clue to 

understand the mechanism by which EPO activation is 

involved in the disease severity in RSV infection.  

Among the downstream genes of the EPO pathway, 

increased expression of BNIP3L and FECH are related to 

disease severity, suggesting that these molecules might play 

a central role in disease complications and final clinical 

outcomes. BNIP3L is a member of the Bcl-2 family that 

regulates apoptosis through the mitochondrial pathway.
[15]

 

FECH, also known as ferrochelatase, is involved in the 

heme biosynthetic pathway and is required for the insertion 

of iron into protoporphyrin to form the heme group.
[16]

 Both 

HIF1 and EPO induce BNIP3L and FECH expression.
[17,18]

 

HIF1-driven BNIP3L induction promotes cell death in 

certain tissues such as neurons. In contrast, BNIP3L 

induction does not induce cell death in fibroblasts and tumor 

cells.
[19]

 A recent report revealed that treatment with 

antioxidants such as N-acetylcysteine and butylated 

hydroxyanisole inhibits cell death caused by HIF1-driven 

induction of BNIP3L. Also, small molecule inhibitors of 

HIF1 such as dihydroxybenzoate (DHB) or 

dimethyloxalylglycine (DMOG) also suppress HIF1-

BNIP3L-dependent neuronal cell death.
[20]

 These facts 

suggest that treatment with antioxidants or HIF1 inhibitors 

can be effective for a severe course of RSV infection. 

Although further clinical work is required, validation of 

these findings may enable BNIP3L and FECH expression 

profiling to become a valuable tool for identifying high-risk 

LRTI patients after RSV infection and those who are 

eligible for adjuvant therapeutic interventions. 

Conclusion 

Upregulation of EPO-driven signaling, especially increased 

expression of BNIP3L and FECH, can be biomarkers that 

define disease severity and potential clinical complications 

in children with RSV LRTI. 

Acknowledgements 

This work was supported by Grants-in-Aid for Scientific 

Research (C), Grants-in-Aid for Young Scientists (B), and a 

St. Marianna University Grant. We thank all the members of 

staff at department of pharmacogenomics for discussions. 

References 

[1] Stockman LJ, Curns AT, Anderson LJ, Fischer-

Langley G Respiratory syncytial virus-associated 

hospitalizations among infants and young children 

in the United States, 1997-2006. Pediatr Infect Dis 

J 2012; 31:5-9. 

doi:10.1097/INF.0b013e31822e68e6. 

[2] Thompson WW, Shay DK, Weintraub E, Brammer 

L, Cox N, Anderson LJ et al. Mortality associated 

with influenza and respiratory syncytial virus in the 

United States. Jama 2003; 289:179-186. 

[3] Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi 

SA, Singleton RJ et al. Global burden of acute 

lower respiratory infections due to respiratory 

syncytial virus in young children: a systematic 

review and meta-analysis. Lancet 2010; 375:1545-

1555. doi:10.1016/S0140-6736(10)60206-1. 

[4] Shi T, Balsells E, Wastnedge E, Singleton R, 

Rasmussen ZA, Zar HJ et al. Risk factors for 

respiratory syncytial virus associated with acute 

lower respiratory infection in children under five 

years: Systematic review and meta-analysis. J Glob 

Health 2015; 5:020416. 

doi:10.7189/jogh.05.020416. 

[5] Brand HK, Ahout IM, de Ridder D, van Diepen A, 

Li Y, Zaalberg M et al. Olfactomedin 4 Serves as a 

Marker for Disease Severity in Pediatric 

Respiratory Syncytial Virus (RSV) Infection. PLoS 

One 2015; 10:e0131927. 

doi:10.1371/journal.pone.0131927. 

[6] Mejias A, Dimo B, Suarez NM, Garcia C, Suarez-

Arrabal MC, Jartti T et al. Whole blood gene 



International Journal of Innovative Research in Medical Science (IJIRMS) 

Volume 02 Issue 09 September 2017, ISSN No. - 2455-8737 

Available online at - www.ijirms.in 

 

 1351 DOI: 10.23958/ijirms/vol02-i09/21                                                                  © 2017 Published by IJIRMS Publication 

 

expression profiles to assess pathogenesis and 

disease severity in infants with respiratory 

syncytial virus infection. PLoS Med 2013; 

10:e1001549. doi:10.1371/journal.pmed.1001549. 

[7] Smyth GK, Speed T Normalization of cDNA 

microarray data. Methods 2003; 31:265-273. 

[8] Krantz SB Erythropoietin. Blood 1991; 77:419-

434. 

[9] Hofmann TG, Moller A, Sirma H, Zentgraf H, 

Taya Y, Droge W et al. Regulation of p53 activity 

by its interaction with homeodomain-interacting 

protein kinase-2. Nat Cell Biol 2002; 4:1-10. 

doi:10.1038/ncb715. 

[10] Semenza GL Regulation of erythropoietin 

production. New insights into molecular 

mechanisms of oxygen homeostasis. Hematol 

Oncol Clin North Am 1994; 8:863-884. 

[11] Bunn HF, Gu J, Huang LE, Park JW, Zhu H 

Erythropoietin: a model system for studying 

oxygen-dependent gene regulation. J Exp Biol 

1998; 201:1197-1201. 

[12] Semenza GL O2 sensing: only skin deep? Cell 

2008; 133:206-208. doi:10.1016/j.cell.2008.04.004. 

[13] Hartmann H, Eltzschig HK, Wurz H, Hantke K, 

Rakin A, Yazdi AS et al. Hypoxia-independent 

activation of HIF-1 by enterobacteriaceae and their 

siderophores. Gastroenterology 2008; 134:756-767. 

doi:10.1053/j.gastro.2007.12.008 

[14] Haeberle HA, Durrstein C, Rosenberger P, 

Hosakote YM, Kuhlicke J, Kempf VA et al. 

Oxygen-independent stabilization of hypoxia 

inducible factor (HIF)-1 during RSV infection. 

PLoS One 2008; 3:e3352. 

doi:10.1371/journal.pone.0003352. 

[15] Czabotar PE, Lessene G, Strasser A, Adams JM 

Control of apoptosis by the BCL-2 protein family: 

implications for physiology and therapy. Nat Rev 

Mol Cell Biol 2014; 15:49-63. 

doi:10.1038/nrm3722. 

[16] Franken AC, Lokman BC, Ram AF, Punt PJ, van 

den Hondel CA, de Weert S Heme biosynthesis and 

its regulation: towards understanding and 

improvement of heme biosynthesis in filamentous 

fungi. Appl Microbiol Biotechnol 2011; 91:447-

460. doi:10.1007/s00253-011-3391-3. 

[17] Guo K, Searfoss G, Krolikowski D, Pagnoni M, 

Franks C, Clark K et al. Hypoxia induces the 

expression of the pro-apoptotic gene BNIP3. Cell 

Death Differ 2001; 8:367-376. 

doi:10.1038/sj.cdd.4400810. 

[18] Liu YL, Ang SO, Weigent DA, Prchal JT, Bloomer 

JR Regulation of ferrochelatase gene expression by 

hypoxia. Life Sci 2004; 75:2035-2043. 

doi:10.1016/j.lfs.2004.03.027. 

[19] Vande Velde C, Cizeau J, Dubik D, Alimonti J, 

Brown T, Israels S et al. BNIP3 and genetic control 

of necrosis-like cell death through the 

mitochondrial permeability transition pore. Mol 

Cell Biol 2000; 20:5454-5468. 

[20] Aminova LR, Siddiq A, Ratan RR Antioxidants, 

HIF prolyl hydroxylase inhibitors or short 

interfering RNAs to BNIP3 or PUMA, can prevent 

prodeath effects of the transcriptional activator, 

HIF-1alpha, in a mouse hippocampal neuronal line. 

Antioxid Redox Signal 2008; 10:1989-1998. 

doi:10.1089/ars.2008.2039. 

Abbreviations 

RSV: respiratory syncytial virus 

EPO: erythropoietin 

LRTI: lower respiratory tract infection 

HIF: hypoxia-inducible factor 

GEO: Gene Expression Omnibus 

DEG: differentially expressed gene 

RMA: robust multichip analysis 

GLM: generalized linear model 

EPOR: erythropoietin receptor 

HIPK2: homeodomain-interacting protein kinase 2 

DHB: dihydroxybenzoate 

DMOG: dimethyloxalylglycine 

 

 

 

 

 

 


