Solution of Demchik's Model of Water Filtration Using the Method of Separation of Variables

Saka-Balogun O.Y. ${ }^{1}$, Oyelami F.H. ${ }^{2}$, Adigun K.A. ${ }^{3}$
Afe Babalola University, Ado-Ekiti, Ekiti, Nigeria. ${ }^{1,2,3}$

Email id: balogunld@yahoo.com ${ }^{1,}$ adefolajufunmilayo@ gmail.com ${ }^{2}$, talk2bimbola@yahoo.com ${ }^{3}$

Abstract

The solution of the model developed by Demchik [2] was obtained using variable seperable method.
Keywords: Separation of variables, water filtration.

1.0 Introduction

Demchik[1] discussed a mathematical model of water filtration at a decreasing rate which generalizes Mint's model [3]. In this paper, the method of separation of variables will be used to solve the model developed by Demchik [2].

2.0 The Model

Consider the following system of model equations with the appropriate initial boundary conditions.

$$
\begin{gather*}
U_{x t}(x, t)+b(t) U_{t}(x, t)-P U(x, t)=0 \\
b(t)=\beta v_{0}^{-1}(1+\gamma t), \quad \rho=\beta v_{0}^{-1} \gamma(z-1) \tag{1.1}\\
U(x, 0)=C_{0} e^{-\beta v_{0}^{-1} x}, \quad U(0, t)=C_{0}(1+\gamma t)^{z}, z=a_{0} v_{0} \gamma^{-1}
\end{gather*}
$$

Together with the relation

$$
\begin{gather*}
C(x, t)=u(1+\gamma t)^{-z}, \quad \frac{\partial \rho(x, t)}{\partial t}=\beta C-a(t) p(x, t) \tag{1.2}\\
\mathrm{V}(\mathrm{t})=\frac{v_{0}}{1+\gamma t}, \quad a(t)=a_{0} v(t)
\end{gather*}
$$

Where v_{0}, γ, a_{0} are constants. And x is the coordinate along the thickness of the filter, $\mathrm{v}(\mathrm{t})$ is the filtration rate, $\mathrm{C}(\mathrm{x}, \mathrm{t})$ and $\mathrm{P}(\mathrm{x}, \mathrm{t})$ are the required concentration of impurities suspended in the liquid and sediment respectively, β is the kinetic coefficient and C_{0} is the impurity concentration in the liquid at the filter net.

> Seeking a solution of the form

$$
\begin{equation*}
U(x, t)=X(x) T(t) \tag{1.3}
\end{equation*}
$$

Where $\mathrm{X}(\mathrm{x})$ is a function of x only and $\mathrm{T}(\mathrm{t})$ is a function of t only. Differentiating (1.3) with respect to x and t, we have

$$
U_{x}(x, t)=X^{\prime}(x) T(t)
$$

$$
\begin{align*}
& U_{t}(x, t)=X(x) T^{\prime}(t) \tag{1.4}\\
& U_{x t}(x, t)=X^{\prime}(x) T^{\prime}(t)
\end{align*}
$$

Hence (1.1) can be written as

$$
X^{\prime}(x) T^{\prime}(t)+\mathrm{b}(\mathrm{t}) X(x) T^{\prime}(t)-\rho X(x) T(t)=0
$$

Giving

$$
\begin{gathered}
X^{\prime}(x) T^{\prime}(t)+X(x)\left[\mathrm{b}(\mathrm{t}) T^{\prime}(t)-p T(t)\right]=0 \\
\frac{X^{\prime}(x)}{X(x)}+\frac{\mathrm{b}(\mathrm{t}) T^{\prime}(t)-p T(t)}{T^{\prime}(t)}=0
\end{gathered}
$$

The equality holds if both sides are equal to a constant say. We have,

Implies

$$
\frac{X^{\prime}(x)}{X(x)}=\lambda
$$

$$
X^{\prime}(x)-\lambda X(x)=0
$$

The auxiliary form of the equation is

$$
X^{\prime}(x)=A e^{\lambda x}
$$

Also,

$$
\frac{\operatorname{PT}(\mathrm{t})-\mathrm{b}(\mathrm{t}) \mathrm{T}^{\prime}(\mathrm{t})}{T^{\prime}(t)}=\lambda
$$

The auxiliary form is given as

$$
T(t)=B e^{\frac{P}{b(t)+\lambda^{2}} t}
$$

Hence

$$
\begin{gathered}
U(x, t)=A e^{\lambda x} \cdot B e^{\frac{P}{b(t)+\lambda} t} \\
U(x, t)=C e^{\lambda x} \cdot e^{\frac{P}{b(t)+\lambda} t}
\end{gathered}
$$

From equation (1.1), we have
$\rho=\beta v_{0}{ }^{-1} \gamma(z-1)$ and $b(t)=\beta v_{0}{ }^{-1}(1+\gamma t), z=a_{0} v_{0} \gamma^{-1}$
Then,

$$
U(x, t)=C e^{\lambda x} \cdot e^{\frac{\left(a_{0-v_{0}-1} \gamma\right) \beta}{\beta v_{0}-1(1+\gamma t)+\lambda} t}
$$

$$
\begin{equation*}
C e^{\lambda x+\frac{(a}{\left.\beta-v_{0}^{-1} \gamma\right) \beta}} \frac{\beta v_{0}^{-1}(1+\gamma t)+\lambda}{} t \tag{1.5}
\end{equation*}
$$

Applying the condtion $U(x, 0)=C_{0} \exp \left(-\beta v_{0}{ }^{-1} x\right)$, we have

$$
\begin{gather*}
C_{0} e^{-\beta v_{0}^{-1} x}=C e^{\lambda x} \\
C_{0}=C e^{\lambda x} \cdot e^{\beta v_{0}-1 x} \\
C_{0}=\operatorname{Cexp}\left(\lambda+\beta v_{0}^{-1}\right) x \tag{1.6}
\end{gather*}
$$

Also applying $U(0, t)=C_{0}(1+\gamma t)^{z}$

$$
\begin{equation*}
C_{0}(1+\gamma t)^{z}=\operatorname{Cexp}\left[\frac{\left(a_{0}-v_{0}^{-1} \gamma\right) \beta}{\beta v_{0}-1(1+\gamma t)+\lambda} t\right] \tag{1.7}
\end{equation*}
$$

From equation (1.5) and (1.6), (1.7) can be written as

$$
\operatorname{Cexp}\left(\lambda+\beta v_{0}^{-1}\right) x \cdot(1+\gamma t)^{z}=\operatorname{Cexp}\left[\frac{\left(a_{0}-v_{0}^{-1} \gamma\right) \beta}{\beta v_{0}^{-1}(1+\gamma t)+\lambda} t\right]
$$

Taking logarithm to base e of both sides, we have,

$$
\log _{e} \exp \left(\lambda+\beta v_{0}^{-1}\right) x+\log _{e}(1+\gamma t)^{a_{0} V_{0} \gamma^{-1}}=\log _{e} \exp \left(a_{\left.0-v_{0}^{-1} \gamma\right) \beta t}-\log _{e} \exp \left(\beta v_{0}^{-1}(1+\gamma t)+\lambda\right)\right.
$$

Giving

$$
\left(\lambda+\beta v_{0}^{-1}\right) x+a_{0} V_{0} \gamma^{-1} \log _{e}(1+\gamma t)=\left(a_{0}-v_{0}^{-1} \gamma\right) \beta t-\left(\beta v_{0}^{-1}(1+\gamma t)+\lambda\right)
$$

Which gives

$$
a_{0} \beta t-\beta V_{0}^{-1}(x+2 \gamma t+1)=\lambda(x+1)+a_{0} V_{0} \gamma^{-1} \log _{e}(1+\gamma t)
$$

Hence

$$
\beta=\frac{\lambda(x+1)+a_{0} V_{0} \gamma^{-1} \ln (1+\gamma t)}{a_{0} t-V_{0}^{-1}(x+2 \gamma t+1)}
$$

For the value of λ, we have

$$
\lambda=\frac{a_{0}\left(\beta t-V_{0} \gamma^{-1} \log _{e}(1+\gamma t)\right)--\beta V_{0}^{-1}(x+2 \gamma t+1)}{x+1}
$$

3.0 CONCLUSION

It was shown that a unique solution exits for the model developed by Demchik [2], using the separation of variable method. As Augusto F.B et.al [1] was able to show the existence of a unique solution to the filtration problem and also the existence of the optimal control for the problem.

References

[1] Agusto F. B., Bamigbola,O. M., Layeni, O. P; Optimal Cotrol For Filtration
[2] Demchik, I. I.: The Theory of Filtration at a Decreasing Rate, J. Appli. Maths Mechs, Vol. 62, No. 3, pp. 479-481, 1998.
[3] D. M. Mints: The theory of water purification. Stroiizdat. Moscow (1964).
[4] O.P Layeni, A.P.Akinola., Adomain Decomposition Approach to a filtration Model.
International Journal Of Nonlinear Science. Vol.5(2008) No.2,pp.158-163

